Transitional Properties of Cotton Fibers from Cellulose I to Cellulose II Structure
نویسندگان
چکیده
Mercerized fibers were prepared from native cotton fabrics via NaOH solution treatment at different concentrations. Mercerization led to transformation of the crystal structure of cotton fibers from cellulose I to II when the NaOH concentration was greater than 10 wt%. In addition, the cotton fibers were converted into a swollen and rough state after mercerization treatment. The results of Fourier transform infrared spectrometry and wide-angle X-ray diffraction indicated that the cellulose molecular structure changed (e.g. the degree of disorder of O-H stretching vibration increased, while the crystallinity index decreased) in the process of mercerization. Thermogravimetric analysis determined that the cellulose II fibers were more thermally stable than the cellulose I fibers. The mechanical properties of cellulose fiber-reinforced polyethylene oxide (PEO) composites showed that both original and mercerized cotton fibers enhanced the tensile strength of the PEO matrix. These properties directly contributed to the advantages of mercerized textile products (e.g. higher luster, holds more dye, more effectively absorbs perspiration, and tougher under different washing conditions).
منابع مشابه
Producing Cellulose nanofiber from Cotton wastes by electrospinning method
One of the main issues of nanotechnology is producing materials with new properties. Nanotechnology, as a powerful tool, has the ability to create evolution in the agricultural system and food–medicinal industries across the world. Producing a high-performance material from reclaimed cellulose material will increase motivation to recycle these materials at all phases of paper production and rem...
متن کاملProducing Cellulose nanofiber from Cotton wastes by electrospinning method
One of the main issues of nanotechnology is producing materials with new properties. Nanotechnology, as a powerful tool, has the ability to create evolution in the agricultural system and food–medicinal industries across the world. Producing a high-performance material from reclaimed cellulose material will increase motivation to recycle these materials at all phases of paper production and rem...
متن کاملMolecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study.
Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with spontaneous Raman scattering microspectroscopy and second harmonic generation (SHG) microscopy to interrogate the molecular alignment in dry and hydrated cellulose fibers. Two types of cellulose were investigated: natural cellulose I in cotton fibers and regenerated cellulose II in rayon fibers. On the basis of the orienta...
متن کاملExtraction and characterization of natural cellulose fibers from common milkweed stems
Natural cellulose fibers with cellulose content, strength, and elongation higher than that of milkweed floss and between that of cotton and linen have been obtained from the stems of common milkweed plants. Although milkweed floss is a unique natural cellulose fiber with low density, the short length and low elongation make milkweed floss unsuitable as a textile fiber. The possibility of using ...
متن کاملComparison of a fungal (family I) and bacterial (family II) cellulose-binding domain.
A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by a...
متن کامل